Hydrogen generation using a CuO/ZnO-ZrO₂ nanocatalyst for autothermal reforming of methanol in a microchannel reactor.
نویسندگان
چکیده
In the present work, a microchannel reactor for autothermal reforming of methanol using a synthesized catalyst porous alumina support-CuO/ZnO mixed with ZrO₂ sol washcoat has been developed and its fine structure and inner surface characterized. Experimentally, CuO/ZnO and alumina support with ZrO₂ sol washcoat catalyst (catalyst slurries) nanoparticles is the catalytically active component of the microreactor. Catalyst slurries have been dried at 298 K for 5 h and then calcined at 623 K for 2 h to increase the surface area and specific pore structures of the washcoat catalyst. The surface area of BET N₂ adsorption isotherms for the as-synthesized catalyst and catalyst/ZrO₂ sol washcoat samples are 62 and 108 ± 2 m²g⁻¹, respectively. The intensities of Cu content from XRD and XPS data indicate that Al₂O₃ with Cu species to form CuAl₂O₄. The EXAFS data reveals that the Cu species in washcoat samples have Cu-O bonding with a bond distance of 1.88 ± 0.02 Å and the coordination number is 3.46 ± 0.05, respectively. Moreover, a hydrogen production rate of 2.16 L h⁻¹ is obtained and the corresponding methanol conversion is 98% at 543 K using the CuO/ZnO with ZrO₂ sol washcoat catalyst.
منابع مشابه
Effect of Sorbitol/Oxidizer Ratio on Microwave Assisted Solution Combustion Synthesis of Copper Based Nanocatalyst for Fuel Cell Grade Hydrogen Production
Steam reforming of methanol is one of the promising processes for on-board hydrogen production used in fuel cell applications. Due to the time and energy consuming issues associated with conventional synthesis methods, in this paper a quick, facile, and effective microwave-assisted solution combustion method was applied for fabrication of copper-based nanocatalysts to convert methanol to hydrog...
متن کاملCyclic Regeneration of Cu/ZnO/Al2O3 Nano Crystalline Catalyst of Methanol Steam Reforming for Hydrogen Production in a Micro-Fixed-Bed Reactor
Hydrogen can be produced for fuel cell applications by using methanol steam reforming reaction. In this article, a method was developed for regeneration of accelerated deactivated methanol-steam-reforming catalyst. Successive deactivation–regeneration cycles were studied in a 250 hours test for the first time including 6 regeneration cycles. It is shown that regeneration of the catalyst in ...
متن کاملMicro-structured string-reactor for autothermal production of hydrogen
Novel micro-structured string-reactor designed as catalytically active wires placed in parallel into a tube was developed. The small diameter of the channels (∼100 m) leads to a short radial diffusion time, a narrow residence time distribution (RTD), and a low pressure drop. This reactor was applied for the oxidative steam-reforming of methanol (OSRM) to produce hydrogen in autothermal mode for...
متن کاملHydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study
Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...
متن کاملKinetics and Systems Analysis for Producing Hydrogen from Methanol and Hydrocarbons
Fuel cell powered electric cars using on-board methanol or hydrocarbon reforming to produce a hydrogenrich gas represent a low-emissions alternative to gasoline internal combustion engines (ICE) with well-towheel efficiencies of 17 %. For the overall methanol process, a simplified model of the reaction network consisting of the total oxidation of methanol, the reverse water-gas shift reaction, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2011